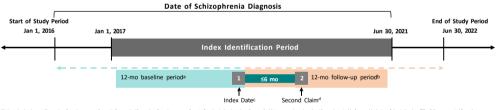
Treatment Patterns and Healthcare Resource Utilization of Patients Early in Schizophrenia Illness Initiating Aripiprazole Lauroxil Versus Oral Aripiprazole: A Retrospective Claims-Based Study

John M. Kane, 1 Regina Grebla, 2 Michael J. Doane, 2 Andrea B. Barthel, 3 Chenxue Liang, 3 Zhengfan Wang, 3 Elizabeth S. Nagelhout, 3 Lauren N. Strand 2 ¹The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; ²Alkermes, Inc., Waltham, MA, USA; ³Genesis Research, Hoboken, NJ, USA

BACKGROUND

- Optimal treatment of patients with schizophrenia, including those who are early in the course of their illness, has the potential to provide long-term benefits1
- Early initiation of treatment with long-acting injectable (LAI) antipsychotic medications, which provide consistent medication exposure over various dosing intervals.² may improve clinical and real-world outcomes in patients with schizophrenia³
- In a real-world study, patients with schizophrenia initiating the atypical LAI antipsychotic aripiprazole lauroxil⁶ (AL) were more likely to be adherent to treatment, had longer medication persistence, and had reduced odds of acute healthcare resource utilization (HCRU) compared with a propensity score-matched cohort initiating oral aripiprazole (OA)7
- The secondary objective of the real-world study was to assess these same outcomes in a subgroup of patients with schizophrenia who were early in their illness

OBJECTIVE


· This subgroup analysis compared real-world treatment patterns and HCRU among early-in-illness patients with schizophrenia initiating

METHODS

· Administrative claims data from January 1, 2016, to June 30, 2022, for privately or publicly insured persons across the United States obtained from the Merative™ MarketScan® Commercial Claims and Encounters, Medicare Supplemental, and Medicaid Multi-State research databases were analyzed retrospectively

Study Design and Patient Selection

Figure 1. Study Design

- "Early-in-illness" patients were defined as those aged 18–40 years who initiated the index treatment ≤1 year after their first observed schizophrenia diagnosis
- · Criteria for identifying patients for the study and the early-in-illness subgroup are listed in Figure 2

Outcomes

- Treatment patterns
- Discontinuation: a continuous gap of ≥60 days without a claim for the index prescription following the therapeutic window for AL or after the previous claim's days' supply for OA
- Persistence: the number of days from the index date to date of first discontinuation or end of the 1-year follow-up period, whichever
- Switching; the presence of a claim for antipsychotic medication other than that initiated at index within the 60-day maximum allowable gap from the date of discontinuation
- Proportion of days covered (PDC): calculated as number of available days of index therapy divided by 365

- Adherent: PDC ≥ 0.80

- Proportions of patients with all-cause and mental health-related inpatient (IP) admissions and outpatient (OP) and emergency department (ED) visits
- Average utilization per patient per month (PPPM) for the outcomes listed above as well as all-cause OP pharmacy claims

Statistical Analysis Propensity score matching (using a 1:1 matching ratio) was used to balance the treatment groups on 22 measured covariates

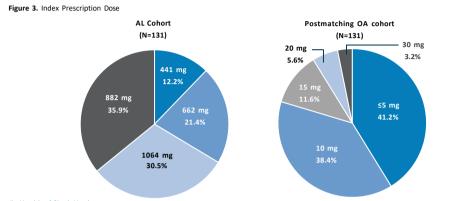

- (eg, age, sex, index year, and baseline HCRU)
- Persistence was compared between the matched AL and OA early-in-illness cohorts using a Cox proportional hazards model Proportions adherent (PDC ≥ 0.80) were compared between the 2 matched cohorts using a logistic regression model
- Other treatment pattern outcomes were analyzed descriptively

- A logistic regression model compared binary HCRU outcomes (occurrence of event, yes or no) between the 2 matched cohorts
- A 2-part modeling strategy combining logistic and Poisson regression models was used to compare visit counts PPPM between the 2 matched cohorts, yielding the estimated rate ratio (RR); bootstrapping was used for generating 95% Cls

RESULTS

• Of the 6599 patients in the overall analysis, 1353 (20.5%) patients met the early-in-illness subgroup criteria (AL cohort, n=131; unmatched OA cohort, n=1222)

Figure 2. Patient Identification



AL aripiprazole laurovil: ICD:10-CM. International Classification of Diseases. Tenth Revision. Clinical Modification: IP. inpatient: LAI, lone-acting injectable: OA, oral aripiprazole: OP, outpatient.

Table 1. Patient Demographics and Baseline Clinical Characteristics Refore Propensity Score Matching

Characteristics	AL COHOIT (II-131)	OA COHOIT (II-1222)	r value
Age at index, mean (SD), years	27.2 (6.4)	27.2 (6.7)	0.97
Sex, female, n (%)	51 (38.9)	575 (47.1)	0.08
Year of index, n (%)			0.010
2017	16 (12.2)	198 (16.2)	
2018	19 (14.5)	258 (21.1)	
2019	26 (19.9)	302 (24.8)	
2020	48 (36.6)	289 (23.6)	
2021	22 (16.8)	175 (14.3)	
Payer type, n (%)			0.001
Commercial	17 (13.0)	313 (25.6)	
Medicaid	114 (87.0)	909 (74.4)	
CCI, mean (SD)	0.51 (1.0)	0.53 (1.1)	0.82
CCI category, 3+, n (%)	8 (6.1)	71 (5.8)	
Treatment history,a n (%)			
Typical oral antipsychotic	21 (16.0)	121 (9.9)	0.03
Atypical oral antipsychotic	104 (79.4)	720 (58.9)	<0.001
Oral aripiprazole	76 (58.0)	0	
Mood stabilizer	53 (40.5)	499 (40.8)	0.93
Antidepressant	74 (56.5)	832 (68.1)	0.007
Anticholinergic	31 (23.7)	250 (20.5)	0.39
Sedative/hypnotic	10 (7.6)	114 (9.3)	0.52
Antianxiety medication	59 (45.0)	548 (44.8)	0.97
Stimulant/ADHD medication	31 (23.7)	325 (26.6)	0.47

Successful balancing of groups was achieved (standardized mean differences for all covariates <0.10) through propensity score matching

- · Among early-in-illness patients, the AL cohort had significantly higher adherence and significantly longer persistence with their medication compared with those in the matched OA cohort (Table 2)
- · During 12 months of follow-up, fewer patients in the AL cohort discontinued treatment compared with patients in the matched OA cohort
- Table 2. Treatment Patterns Among Matched Early-in-Illness Patient Cohorts

12-Month follow-up treatment patterns	AL Cohort (n=131)	OA Cohort (n=131)	
Persistence, median (Q1, Q3)a	256 (141, 365)	123 (60, 298)	
HR (95% CI) for nonpersistence, Pb	0.5 (0.38, 0.64), <0.0001		
Switching, n (%) ^c	29 (22.1)	28 (21.1)	
To oral antipsychotic	27 (20.6)	19 (14.6)	
To LAI antipsychotic	2 (1.5)	9 (6.5)	
PDC, mean (SD) ^d	0.69 (0.27)	0.47 (0.22)	
Adherence (PDC ≥ 0.80), n (%)	58 (44.3)	27 (20.7)	
OR (95% CI), P ^b	3.0 (1.76, 5.24), <0.0001		
Discontinuation, n (%)e	73 (55.7)	98 (75.1)	

- The odds of having ≥1 all-cause ED visit were significantly lower for patients who initiated AL (Figure 4)
- · Numbers of all-cause and mental health-related IP and ED visits PPPM were significantly lower in the AL cohort vs matched OA cohort
- . OP utilization did not differ between the matched cohorts

Figure 4 All-Cause and Mental Health-Related IP ED and OP Visite

AL arioiorazole lauroxil; ED, emergency department; HCRU, healthcare resource utilization; IP, inpatient; OA, oral aripiprazole; OP, outpatient; OR, odds ratio.

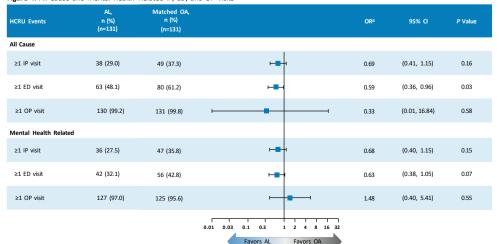
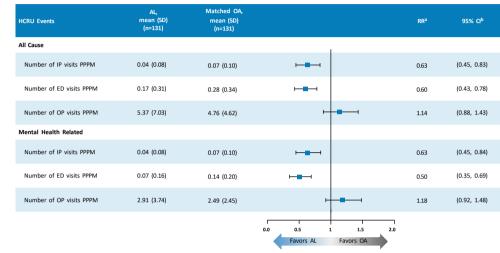



Figure 5. Numbers of All-Cause and Mental Health-Related IP. FD. and OP Visits. PPPM

LIMITATIONS

- The first diagnosis of schizophrenia captured in this database may not have been the patient's true initial diagnosis; age was restricted to increase the
- likelihood of patients included in the early-in-illness population being truly early in their illness Requiring ≥ 2 claims of AL and OA may have increased estimates of adherence and persistence; however, both cohorts had the same requirement
- Claims related to schizophrenia and its treatment may not have been captured accurately or completely, which could have led to inaccurate reports of treatment patterns and an underestimation of HCRU

CONCLUSIONS

- In this real-world study, early-in-illness patients with schizophrenia initiating AL were more likely to be adherent to treatment
- and had longer medication persistence compared with matched patients initiating OA
- Initiating AL vs OA was associated with significantly reduced odds of all-cause ED visits
- All-cause and mental health-related IP admissions and ED visits PPPM were significantly reduced among early-in-illness patients initiating AL vs OA, whereas the numbers of visits in OP settings were similar between cohorts
- · Future investigations exploring whether improvements in treatment patterns and reductions in acute HCRU early in
- schizophrenia are associated with better long-term outcomes and reduced economic burden are warranted

2. Mitz R, et al. Neuropsychiotr Dis Treat. 2023;19:531-45. DOI: 10.2147/NOI 535538. 3. Cornel (U. et al. Clin hyphothery, 2016;77(suppl 3): 1-24. DOI: 10.4889/CP.15032a1. 4. Subotnik KL, et al. JAMA Psychiotry, 2015;77(suppl 3): 1-24. DOI: 10.4889/CP.15032a1. 4. Subotnik KL, et al. JAMA Psychiotry, 2015;77(suppl 3): 1-24. DOI: 10.4889/CP.15032a1. 4. Subotnik KL, et al. JAMA Psychiotry, 2015;77(suppl 3): 1-24. DOI: 10.4889/CP.15032a1. 4. Subotnik KL, et al. JAMA Psychiotry, 2015;77(suppl 3): 1-24. DOI: 10.4889/CP.15032a1. 4. Subotnik KL, et al. JAMA Psychiotry, 2015;77(suppl 3): 1-24. DOI: 10.4889/CP.15032a1. 4. Subotnik KL, et al. JAMA Psychiotry, 2015;77(suppl 3): 1-24. DOI: 10.4889/CP.15032a1. 4. Subotnik KL, et al. JAMA Psychiotry, 2015;77(suppl 3): 1-24. DOI: 10.4889/CP.15032a1. 4. Subotnik KL, et al. JAMA Psychiotry, 2015;77(suppl 3): 1-24. DOI: 10.4889/CP.15032a1. 4. Subotnik KL, et al. JAMA Psychiotry, 2015;77(suppl 3): 1-24. DOI: 10.4889/CP.15032a1. 4. Subotnik KL, et al. JAMA Psychiotry, 2015;77(suppl 3): 1-24. DOI: 10.4889/CP.15032a1. 4. Subotnik KL, et al. JAMA Psychiotry, 2015;77(suppl 3): 1-24. DOI: 10.4889/CP.15032a1. 4. Subotnik KL, et al. JAMA Psychiotry, 2015;77(suppl 3): 1-24. DOI: 10.4889/CP.15032a1. 4. Subotnik KL, et al. JAMA Psychiotry, 2015;77(suppl 3): 1-24. DOI: 10.4889/CP.15032a1. 4. Subotnik KL, et al. JAMA Psychiotry, 2015;77(suppl 3): 1-24. DOI: 10.4889/CP.15032a1. 4. Subotnik KL, et al. JAMA Psychiotry, 2015;77(suppl 3): 1-24. DOI: 10.4889/CP.15032a1. 4. Subotnik KL, et al. JAMA Psychiotry, 2015;77(suppl 3): 1-24. DOI: 10.4889/CP.15032a1. 4. Subotnik KL, et al. JAMA Psychiotry, 2015;77(suppl 3): 1-24. DOI: 10.4889/CP.15032a1. 4. Subotnik KL, et al. JAMA Psychiotry, 2015;77(suppl 3): 1-24. DOI: 10.4889/CP.15032a1. 4. Subotnik KL, et al. JAMA Psychiotry, 2015;77(suppl 3): 1-24. DOI: 10.4889/CP.15032a1. 4. Subotnik KL, et al. JAMA Psychiotry, 2015;77(suppl 3): 1-24. DOI: 10.4889/CP.15032a1. 4. Subotnik KL, et al. JAMA Psychiotry, 2015;77(suppl 3): 1-24. DOI: 10.4889/CP.15032a1. 4. Su

RG, MJD, and LNS are or were employees of Alkermes, Inc., and may own stock/options in the company

ACKNOWLEDGMENTS

Copies of this poster can be obtained through this QR (Quick Response) code. These materials are for personal use only and may not be reproduced without permission of Alkermes.

